Нажмите "Enter", чтобы перейти к содержанию

Мембраны это: МЕМБРАНА | это… Что такое МЕМБРАНА?

Мембрана (биология) | это… Что такое Мембрана (биология)?

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии — гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны — молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.

Содержание

  • 1 Основные сведения
  • 2 Функции биомембран
  • 3 Структура и состав биомембран
  • 4 Мембранные органеллы
  • 5 Избирательная проницаемость
  • 6 Ссылки
  • 7 См. также

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны).

Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Функции биомембран

  • барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная — некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

  • маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол.

Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами.

К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Ссылки

  • Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1 — учебник по молекулярной биологии на англ. языке
  • Рубин А.Б. Биофизика, учебник в 2 тт.. — 3-е издание, исправленное и дополненное. — Москва: издательство Московского университета, 2004. — ISBN 5-211-06109-8
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е издание. — Москва: Мир, 1997. — ISBN 5-03-002419-0
  • Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. — Москва: Наука, 1982.
  • Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. — Москва: Наука, 1994.

См. также

  • Липиды
  • Фосфолипиды
  • Активный транспорт
  • Пассивный транспорт
  • Диффузия
  • Осмос
  • Эндоцитоз
  • Искусственные мембраны
  • Владимиров Ю. А., Повреждение компонентов биологических мембран при патологических процессах

Органоиды эукариотической клетки

Акросома • Аппарат Гольджи • Вакуоль • Везикула • Клеточная мембрана • Клеточная стенка • Лизосома • Меланосома • Миофибриллы • Митохондрия • Пероксисома • Пластиды • Реснички/Жгутики • Рибосома • Сократительная вакуоль • Стигма • Хлоропласты • Центросома • Цитоплазма • Эндоплазматический ретикулум • Ядро • Ядрышко

 

БИОЛОГИЧЕСКИЕ МЕМБРАНЫ • Большая российская энциклопедия

БИОЛОГИ́ЧЕСКИЕ МЕМБРА́НЫ (лат. mem­brana – ко­жи­ца, обо­лоч­ка, пе­ре­пон­ка), струк­ту­ры, ог­ра­ни­чи­ваю­щие со­дер­жи­мое кле­ток (кле­точ­ная, или плаз­ма­ти­че­ская, мем­бра­на, плаз­ма­лем­ма) и внут­ри­кле­точ­ных ор­га­нелл. У про­ка­ри­от име­ет­ся толь­ко кле­точ­ная мем­бра­на, в боль­шин­ст­ве слу­ча­ев ок­ру­жён­ная кле­точ­ной стен­кой. У эу­ка­ри­от мем­бра­ной ок­ру­же­на не толь­ко клет­ка, но и яд­ро, а так­же ми­то­хон­д­рии, ли­зо­со­мы, пе­рок­си­со­мы, сек­ре­тор­ные гра­ну­лы, эн­до­со­мы, у рас­те­ний ещё – хло­ро­пла­сты и ва­куо­ли; мем­бра­ны об­ра­зу­ют так­же раз­ветв­лён­ную сеть эн­до­плаз­ма­тического ре­ти­ку­лу­ма и ком­плек­са Голь­джи. Ми­то­хон­д­рии, хло­ро­пла­сты и яд­ра ок­ру­же­ны дву­мя мем­бра­на­ми, а внут­ри хло­ро­пла­стов име­ет­ся ещё один тип мем­бран, фор­ми­рую­щих ти­ла­кои­ды. У жи­вот­ных к кле­точ­ной мем­бра­не сна­ру­жи при­мы­ка­ет гли­ко­про­теи­но­вый ком­плекс – гли­ко­ка­ликс, у рас­те­ний – кле­точ­ная стен­ка. Тол­щи­на мем­бран варь­и­ру­ет от 6 до 10 нм.

Структура биологических мембран

Схема строения клеточной мембраны.

Ос­но­ву Б. м. со­став­ля­ет про­тя­жён­ный двой­ной слой (бис­лой) гли­це­ро­фос­фо-, сфин­го- и гли­ко­ли­пи­дов со встро­ен­ны­ми в не­го мо­ле­ку­ла­ми различных бел­ков. Гид­ро­фоб­ные (не­по­ляр­ные) груп­пы мо­ле­кул ли­пи­дов (ос­тат­ки жир­ных ки­слот) по­гру­же­ны в тол­щу мембра­ны, а гид­ро­филь­ные (по­ляр­ные) го­лов­ки ори­ен­ти­ро­ва­ны на­ру­жу, в ок­ру­жаю­щую вод­ную сре­ду (см. Ли­пи­ды). Плот­ность упа­ков­ки Б. м. обес­пе­чи­ва­ет­ся элек­тро­ста­тическими взаи­мо­дей­ст­вия­ми по­лярных го­ло­вок и гид­ро­фоб­ны­ми кон­так­та­ми ме­ж­ду це­пя­ми жир­ных ки­слот. Вхо­дя­щие в со­став Б. м. бел­ки вза­имо­дей­ст­ву­ют с ли­пид­ным би­сло­ем с по­мо­щью гид­ро­фоб­ных вза­имо­дей­ст­вий и ван­дер­ва­аль­со­вых свя­зей. Со­от­но­ше­ние ли­пи­дов и бел­ков, их со­став в разл. Б. м. мо­гут су­ще­ст­вен­но раз­ли­чать­ся. Так, в мем­бра­нах мие­ли­но­вой обо­лоч­ки со­дер­жа­ние ли­пи­дов (по мас­се) в че­ты­ре раза боль­ше, чем бел­ков, а во внутр. мем­бра­нах ми­то­хон­д­рий бо­лее чем в два раза пре­об­ла­да­ют бел­ки. Ли­пи­ды Б. м. пред­став­ле­ны гл. обр. фос­фа­ти­дил­хо­ли­ном, фос­фа­ти­ди­лэ­та­но­ла­ми­ном, сфин­го­мие­ли­ном, фос­фа­ти­дил­се­ри­ном, фос­фа­ти­ди­ли­но­зи­том и кар­дио­ли­пи­ном, ко­то­рые об­на­ру­жи­ва­ют­ся при­мер­но в од­ном и том же со­от­но­ше­нии в мем­бра­нах раз­ных по уро­вню ор­га­ни­за­ции ор­га­низ­мов. В то же вре­мя на­бор жир­ных кис­лот, вхо­дя­щих в со­став ли­пи­дов, под­вер­жен из­ме­не­ни­ям. Напр., по­ни­же­ние темп-ры, дав­ле­ния и со­лё­но­сти сре­ды оби­та­ния ор­га­низ­мов со­про­во­ж­да­ют­ся уве­ли­че­ни­ем ко­ли­че­ст­ва не­на­сы­щен­ных свя­зей и/или ко­рот­ко­це­по­чеч­ных жир­ных ки­слот в фос­фо­ли­пи­дах и про­ис­хо­дя­щим вслед­ст­вие это­го умень­ше­ни­ем плот­но­сти упа­ков­ки бис­лоя. Ли­пи­дам свой­ст­вен­на оп­ре­де­лён­ная под­виж­ность внут­ри бис­лоя. Они спо­соб­ны к быст­ро­му вра­ще­нию во­круг оси (вра­ща­тель­ная диф­фу­зия), к сво­бод­но­му пе­ре­ме­ще­нию в пре­де­лах од­но­го слоя мем­бра­ны (ла­те­раль­ная диф­фу­зия), а так­же к пе­ре­хо­ду с од­ной сто­ро­ны бис­лоя на дру­гую (та­кое пе­ре­дви­же­ние обес­пе­чи­ва­ет­ся спец. ме­ха­низ­ма­ми). Для кле­точ­ных мем­бран жи­вот­ных кле­ток ха­рак­тер­но вы­со­кое со­дер­жа­ние хо­ле­сте­ри­на (в ср. ок. 21%), ко­то­рый уча­ст­ву­ет в ре­гу­ля­ции те­ку­че­сти мем­бра­ны, пре­пят­ст­вуя плот­ной упа­ков­ке фос­фо­ли­пи­дов. В рас­тит. клет­ке роль хо­ле­сте­ри­на иг­ра­ет его ана­лог – дес­мо­сте­рин. В мем­бра­нах бак­те­рий и вну­три­кле­точ­ных ор­га­нелл сте­ри­ны от­сут­ст­ву­ют. До 10% су­хо­го ве­ще­ст­ва мем­бран при­хо­дит­ся на до­лю уг­ле­во­дов, ко­то­рые экс­по­ни­ро­ва­ны на внеш­ней сто­ро­не кле­точ­ной мем­бра­ны и яв­ля­ют­ся со­став­ной ча­стью мем­бран­ных гли­ко­ли­пи­дов и гли­ко­про­теи­нов.

Схема структурной организации интегрального белка. Спиральный участок встроен в гидрофобную часть липидного бислоя; N-концевой участок с прикреплёнными к нему олигосахаридными цепями расположен на вне…

Со­дер­жа­ние бел­ка в разл. мем­бра­нах ко­леб­лет­ся от 20 до 75% (в пе­ре­счё­те на сухую мас­су). Мем­бран­ные бел­ки мо­гут быть встрое­ны в бис­лой (ин­те­граль­ные бел­ки). При этом они по­гру­же­ны в мем­бра­ну и про­ни­зы­ва­ют её (ино­гда неск. раз) та­ким об­ра­зом, что дос­та­точ­но про­тя­жён­ные уча­ст­ки бел­ка, об­ра­зо­ван­ные гид­ро­фоб­ны­ми ами­но­кис­ло­та­ми, ока­зы­ва­ют­ся в её тол­ще, а гид­ро­филь­ные – на по­верх­но­сти, по обе сто­ро­ны Б. м. Вы­сту­паю­щие над внеш­ней сто­ро­ной мем­бра­ны уча­ст­ки бел­ко­вых мо­ле­кул обыч­но не­сут неск. ко­ва­лент­но свя­зан­ных, час­то раз­ветв­лён­ных це­пей оли­го­са­ха­ри­дов, об­ра­зо­ван­ных ос­тат­ка­ми ман­но­зы, фу­ко­зы, глю­ко­зы, N-аце­тил­глю­ко­за­ми­на и др. Эти ком­по­нен­ты иг­ра­ют роль мар­ке­ров при рас­по­зна­ва­нии кле­точ­ной по­верх­но­сти. Мо­леку­лы пе­ри­фе­ри­че­ских бел­ков рас­по­ло­же­ны гл. обр. на внутренней по­верх­но­сти мем­бра­ны, не про­ни­кая внутрь би­слоя, и удер­жи­ва­ют­ся на ней с по­мо­щью элек­тро­ста­тич. взаи­мо­дей­ст­вий и во­до­род­ных свя­зей; они свя­зы­ва­ют­ся с мем­бра­ной об­ра­ти­мо и мо­гут пе­ре­хо­дить в ци­то­плаз­му при мо­ди­фи­ка­ции бел­ков (напр. , пу­тём их фос­фо­ри­ли­ро­ва­ния) в от­вет на из­ме­не­ния функ­ци­о­наль­но­го со­сто­я­ния клет­ки. Мн. бел­ки ор­га­ни­зо­ва­ны в ви­де слож­ных ком­плек­сов (напр., бел­ки ды­ха­тель­ной це­пи ми­то­хон­д­рий). В клет­ках про­ис­хо­дит по­сто­ян­ное об­нов­ле­ние ком­по­нен­тов Б. м. пу­тём вве­де­ния но­вых молекул липидов и бел­ков, од­на­ко струк­тур­ная ор­га­ни­за­ция Б. м. в те­че­ние всей жиз­ни клет­ки ос­та­ёт­ся не­из­мен­ной.

Функции мембран

Осн. функ­ции мем­бран свя­за­ны с бел­ка­ми. Мн. мем­бран­ные бел­ки – фер­мен­ты, обес­пе­чи­ваю­щие про­те­ка­ние окис­ли­тель­но-вос­ста­но­ви­тель­ных, гид­ро­ли­тич. и био­син­те­тич. ре­ак­ций как на по­верх­но­сти мем­бра­ны, так и внут­ри неё. Важ­ней­шая функ­ция бел­ков мем­бран – транс­порт­ная. Жи­ро­ра­с­тво­ри­мые со­еди­не­ния (напр., сте­ро­ид­ные гор­мо­ны) лег­ко про­ни­ка­ют в ли­пид­ный бис­лой, но для боль­шин­ст­ва др. со­еди­не­ний (в т. ч. ами­но­кис­лот, са­ха­ров) и не­ор­га­нич. ио­нов он не­про­ни­ца­ем. +}$). Та­кая асим­мет­рия обес­пе­чи­ва­ет мн. про­яв­ле­ния жиз­не­де­ятель­но­сти (элек­тро­воз­бу­ди­мость, ос­мо­ти­чес­кую ус­той­чи­вость и др.). Мем­бран­ные бел­ки ак­ва­по­ри­ны об­ра­зу­ют в мем­бра­не спец. ка­на­лы, ре­гу­ли­рую­щие про­ник­но­ве­ние в клет­ку мо­ле­кул во­ды. Взаи­мо­дей­ст­вие клет­ки с внеш­ней сре­дой, ре­гу­ля­ция внут­ри­кле­точ­ных про­цес­сов осу­ще­ст­в­ля­ют­ся по­сред­ст­вом ре­цеп­тор­ных бел­ков (ре­цеп­то­ров), от­вет­ст­вен­ных за фо­то-, тер­мо-, ме­ха­но- и хе­мо­ре­цеп­цию.

Барь­ер­ная функ­ция Б. м. обес­пе­чи­ва­ет со­хра­не­ние оп­ре­де­лён­но­го со­ста­ва клет­ки и кон­цен­тра­ции со­став­ляю­щих её ве­ществ, а так­же за­щи­ту от воз­дей­ст­вия разл. чу­же­род­ных фак­то­ров и ток­си­нов. Бла­го­да­ря Б. м. внут­ри кле­ток воз­мож­но од­но­врем. про­те­ка­ние мно­же­ст­ва не­со­вмес­ти­мых друг с дру­гом ре­ак­ций. Напр., не­об­хо­ди­мые клет­ке бел­ки син­те­зи­ру­ют­ся на ри­бо­со­мах, при­кре­п­лён­ных к эн­до­плаз­ма­ти­че­ско­му ре­ти­ку­лу­му, а их рас­пад про­ис­хо­дит в ли­зо­со­мах. В Б. м. про­те­ка­ют про­цес­сы энер­го­об­ме­на кле­ток. Внутр. мем­бра­ны ми­то­хон­д­рий и мем­бра­ны ти­ла­кои­дов – важ­ней­шие пре­об­ра­зо­ва­те­ли энер­гии, иг­раю­щие клю­че­вую роль в за­па­са­нии энер­гии, об­ра­зую­щей­ся в хо­де ды­ха­ния и фо­то­син­те­за, в энер­гию пи­ро­фос­фат­ной свя­зи аде­но­зин­три­фос­фа­та. Б. м. ней­ро­нов мо­гут ге­не­ри­ро­вать и осу­ще­ст­в­лять пе­ре­да­чу элек­трич. сиг­на­ла, уча­ст­вуя тем са­мым в про­цес­сах воз­бу­ж­де­ния и про­ве­де­ния нерв­но­го им­пуль­са.

Бел­ко­вые и ли­пид­ные ком­по­нен­ты вы­пол­ня­ют ряд др. функ­ций. Фраг­мен­ты фос­фо­ли­пи­дов мо­гут вы­сту­пать в ка­чест­ве пред­шест­вен­ни­ков сиг­наль­ных мо­ле­кул (мес­сен­дже­ров). Напр., при ак­ти­ва­ции мем­бран­ной фос­фо­ли­па­зы А из би­слоя вы­сво­бож­да­ет­ся ара­хи­до­но­вая ки­сло­та, даль­ней­шие пре­вра­ще­ния ко­то­рой при­во­дят к об­ра­зо­ва­нию био­ло­гич. ре­гу­ля­то­ров – тром­бок­са­нов, лей­ко­три­е­нов и про­ста­глан­ди­нов. Фос­фа­ти­дил­се­рин, ло­ка­ли­зо­ван­ный на внутр. сто­ро­не мем­бра­ны, при ини­ци­а­ции апоп­то­за ми­гри­ру­ет на её внеш­нюю сто­ро­ну. Его по­яв­ле­ние слу­жит сиг­на­лом для фа­го­ци­тов, ко­то­рые име­ют ре­цеп­то­ры на этот фос­фо­ли­пид; они «уз­на­ют» де­фект­ные клет­ки и унич­то­жа­ют их. Гли­ко­ли­пи­ды на­ря­ду с гли­ко­про­теи­на­ми иг­ра­ют важ­ную роль в яв­ле­ни­ях меж­кле­точ­ной ад­ге­зии, участ­ву­ют в им­мун­ных ре­ак­ци­ях.

Методы изучения биологических мембран

Для изу­че­ния струк­ту­ры и функ­ции мем­бран ис­поль­зу­ют­ся элек­тро­фи­зи­о­ло­гич. и им­му­но­ци­то­хи­мич. ме­то­ды, жид­ко­ст­ная хро­ма­то­гра­фия (для иден­ти­фи­ка­ции и ана­ли­за ли­пид­ных ком­по­нен­тов), про­точ­ная ци­то­мет­рия, по­зво­ляю­щая про­сле­дить от­вет клет­ки на взаи­мо­дей­ст­вие спе­ци­фич. ли­ган­дов с кле­точ­ной мем­бра­ной, раз­но­об­раз­ные фи­зич. ме­то­ды, ха­рак­те­ри­зую­щие струк­ту­ру мем­бран, упа­ков­ку и под­виж­ность ли­пи­дов в бис­лое (в т. ч. элек­трон­ная мик­ро­ско­пия, ма­ло­уг­ло­вое рас­сеи­ва­ние ней­тро­нов, флуо­рес­цент­ная спек­тро­ско­пия, кру­го­вой дих­ро­изм), и др. ме­то­ды.

Раз­но­об­ра­зие ти­пов Б. м., их по­ли­функ­цио­наль­ность и вы­со­кая чув­ст­ви­тель­ность к внеш­ним воз­дей­ст­ви­ям яв­ля­ют­ся при­чи­ной то­го, что они во­вле­кают­ся в разл. па­то­ло­гич. про­цес­сы. По­вре­жде­ния кле­точ­ных мем­бран, при­во­дя­щие к об­ра­зо­ва­нию сво­бод­ных ра­ди­ка­лов и ги­бе­ли нерв­ных кле­ток, ле­жат в ос­но­ве ней­ро­де­ге­не­ра­тив­ных за­бо­ле­ва­ний (бо­лезнь Альц­гей­ме­ра, пар­кин­со­низм, бо­ко­вой амио­тро­фи­че­ский скле­роз), мо­гут слу­жить при­чи­ной ин­суль­та и ин­фарк­та мио­кар­да.

Biology4Kids.com: Структура клетки: клеточная мембрана


Структура ячейки и Функция | Системы | микробио | Растения | Научный метод | Все темы

Обзор | Клеточная мембрана | член Белки | Клеточные стенки | Соединения | Цитоплазма | Ядро
Хромосомы | Центриоли | Рибосомы | Митохондрии | Хлоропласты | Эндо. Ретикулум | Комплекс Гогли | Вакуоли | Микрофиламенты | Микротрубочки | Лизосомы | Пероксисомы


Согласно клеточной теории , клетки являются основной единицей организации в биологии. Являетесь ли вы одной клеткой или синим китом с триллионами клеток, вы все равно состоите из клеток. Все клетки заключены в клеточную мембрану , которая удерживает кусочки внутри. Когда вы думаете о мембране, представьте, что это большой пластиковый пакет с крошечными отверстиями. Этот мешок удерживает все части клетки и жидкости внутри клетки и удерживает любые неприятные вещи вне клетки. Отверстия предназначены для того, чтобы некоторые вещи могли входить и выходить из клетки.

Клеточная мембрана не является твердой структурой. Он состоит из миллионов более мелких молекул, которые создают гибкий и пористый контейнер. Белки и фосфолипиды составляют большую часть структуры мембраны. Фосфолипиды составляют основной мешок. Белки находятся вокруг отверстий и помогают перемещать молекулы внутрь и наружу клетки. Есть также белки, прикрепленные к внутренней и внешней поверхностям мембраны.

Ученые используют жидкостно-мозаичную модель для описания организации фосфолипидов и белков. Модель показывает, что молекулы фосфолипидов имеют форму головы и хвоста. Головная часть молекулы любит воду ( гидрофильный ), а хвоста нет ( гидрофобный ). Поскольку хвосты стараются избегать воды, они склонны прилипать друг к другу, а головками обращены к водянистым ( водным ) областям внутри и снаружи клетки. Две поверхности молекул создают липидный бислой .

А мембранные белки? Ученые показали, что многие белки плавают в липидном бислое. Некоторые из них подключены постоянно, а другие только временно. Некоторые прикреплены только к внутреннему или внешнему слою мембраны, в то время как трансмембранные белки проходят через всю структуру. Трансмембранные белки, пересекающие бислой, очень важны для активного транспорта ионов и малых молекул.

Когда вы узнаете больше об клеточных органеллах, вы обнаружите, что все они имеют мембрану. Мембраны органелл не имеют такого же химического состава, как клеточная мембрана. Они имеют разные липиды и белки, которые делают их уникальными. Мембрана, окружающая лизосому, отличается от мембраны, окружающей эндоплазматический ретикулум.

Некоторые органеллы имеют две мембраны. Митохондрия имеет внешнюю и внутреннюю мембраны. Наружная мембрана содержит части митохондрий. Внутренняя мембрана содержит пищеварительные ферменты, расщепляющие пищу. Хотя мы все время говорим о мембранах, вы должны помнить, что все они используют базовую структуру двойного слоя фосфолипидов, но вы найдете множество вариаций по всей клетке.

► СЛЕДУЮЩАЯ СТРАНИЦА В СТРУКТУРЕ ЯЧЕЙКИ
► СЛЕДУЮЩАЯ ОСТАНОВКА В ТУРЕ ПО САЙТУ
► ВЕРНУТЬСЯ НА НАЧАЛО СТРАНИЦЫ

► Или выполните поиск на сайтах. ..


Паспорт для иммунной системы (U of Pennsylvania Video)



Encyclopedia.com:
http://www.encyclopedi ://en.wikipedia.org/wiki/Cell_membrane
Британская энциклопедия:
http://www.britannica.com/EBchecked/topic/101396/cell/37365/The-cell-membrane?anchor=ref313686

  • Обзор
  • Клеточная мембрана
  • член. Белки
  • Клеточные стенки
  • Соединения
  • Цитоплазма
  • Ядро
  • Хромосомы
  • Центриоли
  • Рибосомы
  • Митохондрии
  • Хлоропласты
  • Эндо. Ретикулум
  • Комплекс Гольджи
  • Вакуоли
  • Микрофиламенты
  • Микротрубочки
  • Лизосомы
  • Пероксисомы
  • Функции ячейки
  • Другие темы


3.

4 Клеточная мембрана – концепции биологии – 1-е канадское издание

Перейти к содержимому

0126

К концу этого раздела вы сможете:

  • Понимать жидкостно-мозаичную модель мембран
  • Опишите функции фосфолипидов, белков и углеводов в мембранах

Плазматическая мембрана клетки определяет границу клетки и определяет характер ее контакта с окружающей средой. Клетки исключают одни вещества, поглощают другие и выделяют третьи, и все это в контролируемых количествах. Плазматические мембраны охватывают границы клеток, но они не являются статичным мешком, они динамичны и постоянно находятся в движении. Плазматическая мембрана должна быть достаточно гибкой, чтобы позволить определенным клеткам, таким как эритроциты и лейкоциты, изменять форму при прохождении через узкие капилляры. Это наиболее очевидные функции плазматической мембраны. Кроме того, поверхность плазматической мембраны несет маркеры, которые позволяют клеткам распознавать друг друга, что жизненно важно, поскольку ткани и органы формируются во время раннего развития, и которые позже играют роль в различии «своих» и «чужих» клеток. иммунный ответ.

Плазматическая мембрана также несет рецепторы, являющиеся местами прикрепления специфических веществ, взаимодействующих с клеткой. Каждый рецептор устроен так, чтобы связываться с определенным веществом. Например, поверхностные рецепторы мембран создают изменения внутри, такие как изменения ферментов метаболических путей. Эти метаболические пути могут иметь жизненно важное значение для обеспечения клетки энергией, производства специфических веществ для клетки или расщепления клеточных отходов или токсинов для утилизации. Рецепторы на внешней поверхности плазматической мембраны взаимодействуют с гормонами или нейротрансмиттерами и позволяют передавать их сообщения в клетку. Некоторые сайты распознавания используются вирусами в качестве точек присоединения. Хотя они очень специфичны, такие патогены, как вирусы, могут эволюционировать, чтобы использовать рецепторы для проникновения в клетку, имитируя конкретное вещество, которое рецептор должен связывать. Эта специфичность помогает объяснить, почему вирус иммунодефицита человека (ВИЧ) или любой из пяти типов вирусов гепатита проникают только в определенные клетки.

В 1972 году С. Дж. Сингер и Гарт Л. Николсон предложили новую модель плазматической мембраны, которая, по сравнению с более ранним пониманием, лучше объясняла как микроскопические наблюдения, так и функцию плазматической мембраны. Это было названо жидкостно-мозаичной моделью. Модель несколько эволюционировала с течением времени, но по-прежнему лучше всего описывает структуру и функции плазматической мембраны, как мы их сейчас понимаем. Жидкостно-мозаичная модель описывает структуру плазматической мембраны как мозаику компонентов, включая фосфолипиды, холестерин, белки и углеводы, в которой компоненты способны течь и менять положение 9.0005, при сохранении основной целостности мембраны. Как молекулы фосфолипидов, так и встроенные белки способны быстро и латерально диффундировать в мембрану. Текучесть плазматической мембраны необходима для деятельности определенных ферментов и транспортных молекул внутри мембраны. Плазматические мембраны имеют толщину от 5 до 10 нм. Для сравнения, эритроциты человека, видимые с помощью световой микроскопии, имеют толщину примерно 8 мкм, или примерно в 1000 раз толще плазматической мембраны.

Рис. 3.21 Жидкостно-мозаичная модель структуры плазматической мембраны описывает плазматическую мембрану как жидкую комбинацию фосфолипидов, холестерина, белков и углеводов.

Плазматическая мембрана состоит в основном из двойного слоя фосфолипидов со встроенными белками, углеводами, гликолипидами и гликопротеинами, а в клетках животных — холестерином. Количество холестерина в плазматических мембранах животных регулирует текучесть мембраны и изменяется в зависимости от температуры окружающей среды клетки. Другими словами, холестерин действует как антифриз в клеточной мембране и более распространен у животных, живущих в холодном климате.

Основная ткань мембраны состоит из двух слоев молекул фосфолипидов, причем полярные концы этих молекул (выглядящие как набор шариков в художественном исполнении модели) (рис. 3.22) контактируют с водной жидкостью как внутри и снаружи клетки. Таким образом, обе поверхности плазматической мембраны гидрофильны. Напротив, внутренняя часть мембраны между двумя ее поверхностями представляет собой гидрофобную или неполярную область из-за хвостов жирных кислот. Эта область не имеет притяжения для воды или других полярных молекул.

Рис. 3.22. Эта молекула фосфолипида состоит из гидрофильной головки и двух гидрофобных хвостов. Гидрофильная головная группа состоит из фосфатсодержащей группы, присоединенной к молекуле глицерина. Гидрофобные хвосты, содержащие либо насыщенную, либо ненасыщенную жирную кислоту, представляют собой длинные углеводородные цепи.

Белки составляют второй основной химический компонент плазматических мембран. Интегральные белки встроены в плазматическую мембрану и могут охватывать всю или часть мембраны. Интегральные белки могут служить каналами или насосами для перемещения материалов в клетку или из нее. Периферийные белки находятся на внешней или внутренней поверхности мембран, прикрепленные либо к интегральным белкам, либо к молекулам фосфолипидов. Как интегральные, так и периферические белки могут служить ферментами, структурными прикреплениями к волокнам цитоскелета или частью клеточных сайтов узнавания.

Углеводы являются третьим основным компонентом плазматических мембран. Они всегда находятся на внешней поверхности клеток и связаны либо с белками (образуя гликопротеины), либо с липидами (образуя гликолипиды). Эти углеводные цепи могут состоять из 2–60 моносахаридных звеньев и могут быть прямыми или разветвленными. Наряду с периферическими белками углеводы образуют на клеточной поверхности специализированные участки, позволяющие клеткам узнавать друг друга.

Эволюция в действии

Как вирусы заражают определенные органы Специфические молекулы гликопротеина, экспонированные на поверхности клеточных мембран клеток-хозяев, используются многими вирусами для заражения определенных органов. Например, ВИЧ способен проникать через плазматические мембраны определенных видов лейкоцитов, называемых Т-хелперами и моноцитами, а также через некоторые клетки центральной нервной системы. Вирус гепатита атакует только клетки печени.

Эти вирусы способны вторгаться в эти клетки, потому что клетки имеют сайты связывания на своей поверхности, которые вирусы используют с одинаково специфическими гликопротеинами в своей оболочке. (рис. 3.23). Клетка обманывается мимикрией молекул оболочки вируса, и вирус может проникнуть в клетку. Другие участки распознавания на поверхности вируса взаимодействуют с иммунной системой человека, побуждая организм вырабатывать антитела. Антитела вырабатываются в ответ на антигены (или белки, связанные с инвазивными патогенами). Эти же участки служат местами для прикрепления антител и либо уничтожают, либо подавляют активность вируса. К сожалению, эти участки на ВИЧ кодируются генами, которые быстро меняются, что очень затрудняет производство эффективной вакцины против вируса. Популяция вируса внутри инфицированного человека быстро эволюционирует посредством мутаций в разные популяции или варианты, отличающиеся различиями в этих сайтах узнавания. Это быстрое изменение вирусных поверхностных маркеров снижает эффективность иммунной системы человека в борьбе с вирусом, поскольку антитела не распознают новые вариации поверхностных паттернов.

Рис. 3.23. ВИЧ прикрепляется к рецептору CD4, гликопротеину на поверхности Т-клеток, и связывается с ним, прежде чем проникнуть в клетку или заразить ее.

Современное понимание плазматической мембраны называется жидкостно-мозаичной моделью. Плазматическая мембрана состоит из двойного слоя фосфолипидов, гидрофобные жирнокислотные хвосты которых контактируют друг с другом. Ландшафт мембраны усеян белками, некоторые из которых пересекают мембрану. Некоторые из этих белков служат для транспортировки материалов в клетку или из нее. Углеводы присоединены к некоторым белкам и липидам на внешней поверхности мембраны. Они образуют комплексы, которые функционируют для идентификации клетки с другими клетками. Жидкостная природа мембраны обусловлена ​​конфигурацией хвостов жирных кислот, наличием встроенного в мембрану холестерина (в клетках животных) и мозаичностью белков и белково-углеводных комплексов, не закрепленных прочно в место. Плазматические мембраны охватывают границы клеток, но они не являются статичным мешком, они динамичны и постоянно находятся в движении.

жидкостно-мозаичная модель: модель структуры плазматической мембраны в виде мозаики компонентов, включая фосфолипиды, холестерин, белки и гликолипиды, что приводит к жидкостному, а не статическому характеру

Атрибуция СМИ

  • Рисунок 3.

Ваш комментарий будет первым

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *